

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

EXEMPLAR 2014

MEMORANDUM

MARKS: 150

This memorandum consists of 13 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

QUESTION 1

1.1	As the number of days that an athlete trained increased, the time	✓ explanation	
	taken to run the 100m event decreased.		
	OR		
	The fewer number of days an athlete trained, the longer the time he		
	took to complete the 100m sprint.		
	OR		
	The greater number of days an athlete trained, the shorter the time		
	he ran the 100m sprint.		(1)
1.2	(60; 18,1)	✓	
			(1)
1.3	a = 17,81931464	$\checkmark \checkmark a$	
	b = -0.070685358	✓ b	
	$\hat{y} = -0.07x + 17.82$	✓ equation	
			(4)
1.4	$\hat{y} \approx -0.07(45) + 17.82$	✓ substitution	
	≈ 14,67 seconds	✓ answer	
	1 1,0 1 33331.00		(2)
1.5	r = -0.74 (-0.740772594)	$\checkmark \checkmark r$	
			(2)
1.6	There is a moderately strong relationship between the variables.	√ moderately	
		strong	
			(1)
			[11]

Mathematics/P2

2.1	170 160 150 140 130 120 110 100 90 10 90 10 60 10 30 20 10 0 10 20 30 40 30 10 10 10 10 10 10 10 10 10 10 10 10 10	✓ grounding at 0 ✓ plotting at upper limits ✓ smooth shape of curve
2.2	$40 \le t < 60$	(3) ✓ class (1)
2.3	(96; 164) ∴ 172 – 164 = 8 learners	√164 √8 (2)
2.4	Frequency: 25; 44; 60; 28; 9; 6 Mean = $\frac{25 \times 10 + 44 \times 30 + 60 \times 50 + 28 \times 70 + 9 \times 90 + 6 \times 110}{172}$ = $\frac{8000}{172}$ = 46,51 hours	✓ frequency ✓ midpoints $ \sqrt{\frac{8000}{172}} $ ✓ answer $ (4) $ [10]

2.1	V(7.0)	/
3.1	K(7;0)	✓ answer (1)
3.2		(1)
3.2	$1 = \frac{x_M + 7}{2}$ and $1 = \frac{y_M + 3}{2}$	\sqrt{x}
		\sqrt{y}
	$\therefore M(-5;-1)$	(2)
3.3	3-1	✓ substitution
	$m_{PM} = \frac{3-1}{7-1} \\ = \frac{1}{3}$	
	$-\frac{1}{2}$	√answer
	3	(2)
3.4	$\tan P\hat{S}K = m_{PM} = \frac{1}{3}$	$\checkmark \tan P\hat{S}K = m_{PM}$
	$\lim_{N \to \infty} \frac{1}{3} \int_{-\infty}^{\infty} \frac$	PWI
	$P\hat{S}K = tan^{-1} \left(\frac{1}{3}\right) = 18,43^{\circ}$	✓ PŜK
		$\checkmark \theta$
	$\therefore \theta = 180^{\circ} - 90^{\circ} - 18,43^{\circ} = 71,57^{\circ}$	(3)
3.5	71.570 PK 3	()
	$\cos 71,57^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$	✓ correct ratio
		(- 2
	$PS = \frac{3}{\cos 71,57^{\circ}}$	✓ PS as subject
	= 9,49 units	✓ answer
	OR	\sim answer (3)
	$\sin 18,43^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$	✓ correct ratio
	PS PS	
	$PS = \frac{3}{\sin 18,43^{\circ}}$	✓ PS as subject
	= 9,49 units	✓ answer
2 ((3)
3.6	N(x; -2x+17)	\checkmark N in terms of x
	$m_{TN} = m_{PM} \qquad (TN \mid \mid PM)$	✓ equal gradients
	$\frac{-2x+17-5}{x-(-1)} = \frac{1}{3}$	✓ substitution
	$ \begin{vmatrix} x - (-1) & 3 \\ -6x + 36 = x + 1 \end{vmatrix} $	Substitution
	-6x + 36 - x + 1 -7x = -35	
	x = 5	$\checkmark x$ -value
	$\therefore y = -2(5) + 17 = 7$	✓ y -value
	\therefore N(5; 7)	(5)
	OR	

NSC – Grade 12 Exemplar – Memorandum

 $\checkmark m_{\rm TM}$ $m_{TM} = \frac{1}{3}$ (TN || PM)equation of TM: $y - y_1 = \frac{1}{3}(x - x_1)$ $y - 5 = \frac{1}{3}(x - (-1))$ $y - 5 = \frac{1}{3}x + \frac{1}{3}$ $y = \frac{1}{3}x + 5\frac{1}{3}$ $y = \frac{1}{3}x + c$ **OR** $5 = \frac{1}{3}(-1) + c$ ✓ equation of TM $y = \frac{1}{3}x + 5\frac{1}{3}$ $-2x+17 = \frac{1}{3}x+5\frac{1}{3}$ $-2\frac{1}{3}x = -11\frac{2}{3}$ x = 5✓ equating $\checkmark x$ -value ✓ *y* -value $\therefore y = -2(5) + 17 = 7$ (5) 3.7.1 ✓ equation (1) 3.7.2 Q(1;1)<u>135°</u> gradient of AQ = $\tan 45^{\circ}$ or $\tan 135^{\circ}$ $\checkmark m_{AQ} = -1$ = 1 or -1✓ substitution into $m_{AQ} = \frac{5-1}{a-1} = \pm 1$ gradient formula \checkmark *x*-value :. a - 1 = 4 or -4✓ *y*-value \therefore a = 5 or -3(5)

Copyright reserved

[22]

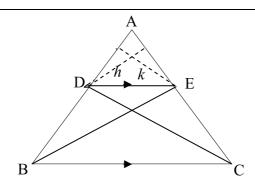
4.1	M(-1;-1)	✓ answer
		(1)
4.2	$m_{NT} = \frac{2-1}{3-4} = -1$ $\therefore m_{AT} = 1 \qquad \text{(radius } \perp \text{ tangent)}$	$\checkmark m_{NT} $ $\checkmark m_{AT}$
	$\therefore m_{AT} = 1 $ (radius \perp tangent) y - 1 = 1(x - 4) y = x - 3	✓ reason ✓ substitution of m and (4; 1) ✓ equation (5)
4.3	$MR \perp AB$ (line from centre to midpt of chord) $MB^2 = MR^2 + RB^2$ (Theorem of Pythagoras)	✓ MR ⊥ AB
	$9 = (\frac{\sqrt{10}}{2})^2 + RB^2$	\checkmark MB = 3
	_	✓ substitution into Theorem of
	$RB^2 = \frac{13}{2}$ $RB = \sqrt{\frac{13}{2}}$	Pythagoras
	$AB = 2\left(\sqrt{\frac{13}{2}}\right) = \sqrt{26} units$ $MN^{2} = (-1 - 3)^{2} + (-1 - 2)^{2}$	✓ AB in surd form (4)
4.4	$MN^{2} = (-1 - 3)^{2} + (-1 - 2)^{2}$ $= 16 + 9$ $= 25$	✓ substitution into distance formula
	MN = 5 units	✓ answer (2)
4.5	$r = 5 - 3 = 2 \text{ units}$ ∴ $(x - 3)^2 + (y - 2)^2 = 4$ ∴ $x^2 + y^2 - 6x - 4y + 9 = 0$	✓r ✓ substitution into circle equation ✓ equation (3)
		[15]

5.1.1	$-\sin \alpha$	✓ reduction
	$=-(-\frac{4}{5})=\frac{4}{5}$	✓ answer (2)
5.1.2	$(-4)^{2} + b^{2} = 5^{2}$ $b^{2} = 25 - 16 = 9$ $b = -3$ $\cos \alpha = \frac{-3}{5}$	$\checkmark b = -3$
	(-3; -4)	✓answer (2)
5.1.3	$\sin (\alpha - 45^{\circ})$ $= \sin \alpha \cos 45^{\circ} - \cos \alpha \sin 45^{\circ}$ $= -\frac{4}{5} \cdot \frac{1}{\sqrt{2}} - (-\frac{3}{5}) \cdot \frac{1}{\sqrt{2}}$ $= -\frac{1}{5\sqrt{2}}$ OR	✓ expansion $ \sqrt{\frac{1}{\sqrt{2}}} $ ✓ answer in simplest form (3)
	$\sin (\alpha - 45^\circ)$ $= \sin \alpha \cos 45^\circ - \cos \alpha \sin 45^\circ$ $= -\frac{4}{5} \cdot \frac{\sqrt{2}}{2} - (-\frac{3}{5}) \cdot \frac{\sqrt{2}}{2}$ $= -\frac{\sqrt{2}}{10}$	✓ expansion $ \sqrt{\frac{\sqrt{2}}{2}} $ ✓ answer in simplest form (3)
5.2.1	$LHS = \frac{8\sin x \cdot \cos x}{\sin^2 x - \cos^2 x}$ $= \frac{4(2\sin x \cdot \cos x)}{\sin^2 x - \cos^2 x}$	$ \begin{array}{l} \checkmark \sin x \\ \checkmark \cos x \\ \checkmark \cos^2 x \end{array} $
	$=\frac{4\sin 2x}{-(\cos^2 x - \sin^2 x)}$	✓ 4 sin 2 <i>x</i> ✓ factorise
	$=\frac{4\sin 2x}{-\cos 2x}$	$\sqrt{-\cos 2x}$
5.2.2	$= -4 \tan 2x$ Undefined when $\cos 2x = 0$ or $\tan 2x = \infty$: $x = 45^{\circ} \text{ and}$ $x = 135^{\circ}$	(6) ✓ 45° ✓ 135° (2)

5.3	$1 - 2\sin^2\theta + 4\sin^2\theta - 5\sin\theta - 4 = 0$ $2\sin^2\theta - 5\sin\theta - 3 = 0$ $(2\sin\theta + 1)(\sin\theta - 3) = 0$ $\therefore \sin\theta = -\frac{1}{2} \text{or } \sin\theta = 3 \text{ (no solution)}$ $\therefore \theta = 210^\circ + 360^\circ k \text{or } \theta = 330^\circ + 360^\circ k ; k \in \mathbb{Z}$	\checkmark 1-2sin ² θ \checkmark standard form \checkmark factors \checkmark no solution \checkmark 210° \checkmark 330° \checkmark + 360°k ; k ∈ Z
	OR $\therefore \theta = 210^{\circ} + 360^{\circ}k \text{ of } \theta = 30^{\circ} + 360^{\circ}k ; k \in \mathbb{Z}$	(7) [22]

6.1	$b=\frac{1}{-}$	✓ value of b	
	$b = \frac{1}{2}$		(1)
6.2	A(30°; 1)	√ 30°	
		√ 1	
			(2)
6.3	$x = 160^{\circ}$	$\checkmark x = 160^{\circ}$	
			(1)
6.4	$h(x) = 2\cos(x - 30^\circ) + 1$		
	$y \in [-1; 3]$	✓ critical values	
	OR	✓ notation	
	$-1 \le y \le 3$		(2)
			[6]

7.1	Draw CD ⊥ AB	✓ construction
/.1	In ΔACD:	Construction
	/ \	✓ sin A
	$\sin A = \frac{\text{CD}}{b}$:: CD = b. $\sin A$	✓ making CD the
	b a	subject
	La ACDD.	J
	In ΔCBD:	
	$\sin B = \frac{CD}{}$: $CD = a \cdot \sin B$ A D B	✓ sin B
	a	
	. Lain Amaria D	
	$\therefore b \cdot \sin A = a \cdot \sin B$	$\checkmark b. \sin A = a. \sin B$
	$\therefore \frac{\sin A}{\sin A} = \frac{\sin B}{\sin A}$	
	a b	(5)
7.2.1	$\hat{SPQ} = 180^{\circ} - 2x$ (opp $\angle s$ of cyclic quad)	$\checkmark \hat{SPQ} = 180^{\circ} - 2x$
	$P\hat{S}Q + P\hat{Q}S = 2x$ (sum of $\angle s$ in Δ)	(S/R)
	$P\hat{S}Q = P\hat{Q}S = x$ (\(\angle s\) opp equal sides)	
	(2s opp equal sides)	✓ reason
		(2)
7.2.2	$\frac{\sin \hat{SPQ}}{\sin \hat{SQ}} = \frac{\sin \hat{PSQ}}{\sin \hat{PSQ}}$	
	${\text{SQ}} = {\text{PQ}}$	✓ substitution into
	$\frac{\text{SQ}}{\sin(180^\circ - 2x)} = \frac{\text{PQ}}{\sin x}$	correct formula
	SO = k	$\sqrt{\sin 2x}$
	$SO = \frac{k \sin 2x}{x}$	✓ SQ subject
	$\sin x$	$\checkmark 2\sin x.\cos x$
	$SQ = \frac{k \sin 2x}{\sin x}$ $SQ = \frac{k(2 \sin x \cdot \cos x)}{\sin x} = 2k \cos x$	(4)
	5111 %	(.)
	OR	
	$SQ^2 = PQ^2 + PS^2 - 2PQ.PS.\cos SPQ$	✓ substitution into
	$= k^{2} + k^{2} - 2.k.k. \cos (180^{\circ} - 2x)$ = $2k^{2} + 2k^{2} \cos 2x$	correct formula
		$\sqrt{-\cos 2x}$
	$=2k^2+2k^2(2\cos^2 x-1)$	$\checkmark 2\cos^2 x - 1$
	$=4k^2\cos^2x$	✓ simplification
	$SQ = 2k \cos x$	(4)
7.2.3	$\tan y = \frac{3}{1}$	
	k	✓ tan ratio
	$k = \frac{3}{\tan x}$	Laubiant 1
	$\frac{x-\tan y}{\tan y}$	$\checkmark k$ subject and substitution
	(3)	รนบริเทเนทิงที
	$SQ = 2\cos x \left(\frac{3}{\tan y}\right)$	
		(2)
	$=\frac{6\cos x}{\cos x}$	[13]
	tan y	[13]


8.1	the angle subtended	by the chord in the alternate segment	✓ correct theorem
			(1)
8.2.1	$\hat{B}_{1} = \hat{E}_{1} = 68^{\circ}$	(tan chord theorem)	$\checkmark \hat{E}_1 = 68^{\circ}$
	1 1		✓ reason
			(2)
8.2.2	$\hat{E}_{1} = \hat{B}_{3} = 68^{\circ}$	(alt ∠s; AE BC)	$\checkmark \hat{B}_3 = 68^\circ (S/R)$
			(1)
8.2.3	$\hat{D}_{1} = \hat{B}_{3} = 68^{\circ}$	(ext ∠ of cyclic quad)	$\checkmark \hat{D}_1 = 68^{\circ}$
			✓ reason
			(2)
8.2.4	$\hat{E}_2 = 20^\circ + 68^\circ$	$(\operatorname{ext} \angle \operatorname{of} \Delta)$	
	= 88°	`	$\checkmark \hat{E}_2 = 88^\circ (S/R)$
			$\begin{array}{c c} - & & \\ \hline & & \\ \end{array} $
8.2.5	$\hat{C} = 180^{\circ} - 88^{\circ}$	(opp ∠s of cyclic quad)	√ Ĉ = 92°
	= 92°	• • •	✓ reason
			(2)
			[9]

9.1	$\hat{\mathbf{D}}_{A} = \hat{\mathbf{A}} = x \qquad \text{(tan cl}$	nord theorem)	$\checkmark \hat{A} = x$
	4 (********************************	,	✓ reason
	$\hat{\mathbf{A}} = \hat{\mathbf{D}}_2 = x \qquad (\angle \mathbf{s} \text{ op}$	op equal sides)	$\checkmark \hat{A} = \hat{D}_2 = x$
	2 ((S/R)
0.2	^		(3)
9.2	$\hat{\mathbf{M}}_1 = 2x \qquad (\text{ext } \angle$	$(\Delta \circ \Delta) \circ (\Delta \circ \Delta) \circ (\Delta \circ \Delta)$ at centre = $2\Delta \circ \Delta$ at circum)	$\checkmark \hat{M}_1 = 2x (S/R)$
		$s \perp tan)$	$\checkmark \hat{MDE} = 90^{\circ}$
	$\hat{\mathbf{M}}_2 = 90^{\circ} - 2x$		(S/R)
	$\hat{E} = 180^{\circ} - (90^{\circ} + 90^{\circ} - 2x)$ $= 2x$	(sum of \angle s in \triangle MDE)	$\checkmark \hat{E} = 2x$
		rse tan chord theorem)	✓ reason
			(4)
9.3	$\hat{M}_3 = 90^{\circ}$	$(EM \perp AC)$	$\sqrt{\hat{M}_3} = 90^{\circ}$
	$\hat{ADB} = 90^{\circ}$	(∠ in semi-circle)	$\checkmark \hat{ADB} = 90^{\circ} (S/R)$
	∴ FMBD a cyclic quad	$(\operatorname{ext} \angle \operatorname{of quad} = \operatorname{int opp} \angle)$	✓ reason
	EMC = 90°	OR (EM + AC)	$\checkmark \hat{EMC} = 90^{\circ}$
	$\hat{ADB} = 90^{\circ}$	(EM ⊥ AC) (∠ in semi-circle)	$\checkmark \hat{ADB} = 90^{\circ} (S/R)$
	∴ FMBD a cyclic quad	(opp \angle s of quad supp)	✓ reason
			(3)
9.4	$DC^2 = MC^2 - MD^2$ = $(2PC)^2 - (2PC)^2$	(Theorem of Pythagoras)	✓ Th of Pythagoras ✓ substitution
	$= (3BC)^2 - (2BC)^2$ = 9BC ² - 4BC ²	(MB = MD = radii)	\checkmark 9BC ² – 4BC ²
	$=5BC^2$		(3)
9.5	In ΔDBC and ΔDFM:		
	$\hat{\mathbf{D}}_4 = \hat{\mathbf{D}}_2 = x$	(proven in 9.1)	$ \hat{\mathbf{D}}_4 = \hat{\mathbf{D}}_2 $
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{F}}_2$	(ext ∠ of cyclic quad)	$ \hat{B}_1 = \hat{F}_2 $
	$\hat{\mathbf{C}} = \hat{\mathbf{M}}_2$		✓ reason
	$\therefore \Delta DBC \mid \mid \mid \Delta DFM (\angle; \angle; \angle$	∠)	\hat{C} \hat{M}
			$\checkmark \hat{C} = \hat{M}_2 \text{ or}$ $(\angle; \angle; \angle)$
			$(\angle; \angle; \angle) \tag{4}$
9.6	$\frac{DM}{DM} = \frac{DC}{DC}$	(ΔDBC ΔDFM)	
	$\overline{\text{FM}} - \overline{\text{BC}}$		✓ S
	$=\frac{\sqrt{5}BC}{}$		
	BC		✓ answer
	$= \frac{\sqrt{5BC}}{BC}$ $= \sqrt{5}$		(2)
			[19]

12 NSC – Grade 12 Exemplar – Memorandum

QUESTION 10

10.1

Construction: Join DC and BE and heights k and h

$$\frac{\text{area } \Delta ADE}{\text{area } \Delta DEB} = \frac{\frac{1}{2}.AD.k}{\frac{1}{2}.DB.k} = \frac{AD}{DB}$$
 (equal heights)

$$\frac{\text{area } \Delta ADE}{\text{area } \Delta DEC} = \frac{\frac{1}{2}.AE.h}{\frac{1}{2}.EC.h} = \frac{AE}{EC}$$
 (equal heights)

But Area $\triangle DEB = Area \triangle DEC$ (same base, same height)

$$\therefore \frac{\text{area } \Delta ADE}{\text{area } \Delta DEB} = \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}$$

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

✓ construction

$$\checkmark \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEB}} = \frac{\text{AD}}{\text{DB}}$$

✓ reason

$$\checkmark \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC} = \frac{AE}{EC}$$

✓ Area $\triangle DEB = Area$ $\triangle DEC$ (S/R)

 $\frac{\text{area } \Delta ADE}{\text{area } \Delta DEB} = \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}$

(6)

Copyright reserved

Please turn over

10.2.1	$\frac{AB}{BE} = \frac{AC}{CD}$ (Prop Th; BC ED) $\frac{1}{3} = \frac{3}{CD}$ $\therefore CD = 9 \text{ units}$	$ \frac{AB}{BE} = \frac{AC}{CD} \text{ (S/R)} $ $ \checkmark \text{ substitution} $ $ \checkmark \text{ answer} $ (3)
10.2.2	$\frac{DG}{GA} = \frac{FD}{FE}$ (Prop Th; FG EA) $\frac{9-x}{3+x} = \frac{3}{6}$ $54 - 6x = 9 + 3x$ $-9x = -45$ $x = 5$	$ √ \frac{DG}{GA} = \frac{FD}{FE} \text{ (S/R)} $ $ √ \text{ substitution} $ $ √ \text{ simplification} $ $ √ \text{ answer} $ $ (4)$
10.2.3	In $\triangle ABC$ and $\triangle AED$: \hat{A} is common $\hat{ABC} = \hat{E}$ (corres $\angle s$; $BC \mid\mid ED$) $\hat{ACB} = \hat{D}$ (corres $\angle s$; $BC \mid\mid ED$) $\hat{AABC} \mid\mid \hat{AAED} (\angle, \angle, \angle)$ $\therefore \frac{BC}{ED} = \frac{AC}{AD}$ $\frac{BC}{9} = \frac{3}{12}$ $BC = 2\frac{1}{4}$ units	$✓ \hat{A} \text{ is common}$ $✓ \hat{ABC} = \hat{E} \text{ (S/R)}$ $✓ \hat{ACB} = \hat{D} \text{ (S/R)}$ or $(\angle; \angle; \angle)$ $✓ \frac{BC}{ED} = \frac{AC}{AD}$ $✓ \text{ answer}$
10.2.4	$\frac{\text{area } \Delta ABC}{\text{area } \Delta GFD} = \frac{\frac{1}{2} AC.BC.\sin A\hat{C}B}{\frac{1}{2} GD.FD.\sin \hat{D}}$ $= \frac{\frac{1}{2} (3)(2\frac{1}{4})\sin \hat{D}}{\frac{1}{2} (4)(3)\sin \hat{D}} \qquad \text{(corres } \angle \text{s; BC} \mid \mid ED)$ $= \frac{9}{16}$	(5) ✓ use of area rule ✓ correct sides and angles ✓ substitution of values ✓ sinAĈB = sinD (S/R) ✓ answer (5) [23]

TOTAL: 150